Fibroblast growth factor receptor 2 (FGFR2) fusions in intrahepatic cholangiocarcinoma (iCCA)

Genomic alterations in fibroblast growth factor receptors (FGFRs)

- FGFRs are a family of receptor tyrosine kinases.\(^1,2\) FGFR signalling pathways play a central role in multiple cellular processes, including cell proliferation, migration and survival\(^1,2\).

- Alterations in FGFR genes have emerged as tumourigenic drivers in cancers including iCCA, urothelial carcinoma, myeloid/lymphoid neoplasms and other malignancies\(^3,4\).

- FGFR amplifications, mutations and fusions have been observed in all FGFR subtypes (FGFR1–4).\(^5\) Chromosomal rearrangements involving FGFR2 – resulting in the creation of oncogenic fusion proteins – have frequently been identified in iCCA\(^6\).

- Gene fusions are a type of genomic alteration where two independent genes or portions of genes are juxtaposed, resulting in a hybrid gene\(^7\).

- The development of fusion proteins with oncogenic potential can result from gene fusion events involving a range of different partner genes\(^7\).

FGFR2 fusions

- FGFR2 fusions or rearrangements occur in 10–16% of iCCA cases\(^5,11–13\).

- FGFR2 fusions result in ligand-independent activation of downstream signalling pathways, leading to tumourigenesis\(^14,15\).

Abnormal FGFR2 signalling pathway

- Tumour molecular profiling is necessary to identify FGFR2 fusions.\(^5,7\) Assessment for FGFR2 fusion positivity should be performed with an appropriate diagnostic test\(^7\).

- FGFR2 fusions involve a wide range of fusion partners.\(^9\) To identify patients with FGFR2 fusion-positive cholangiocarcinoma (CCA), it is important to select an assay that:
 - Specifically detects FGFR2 fusions (distinct from FGFR2 point mutations)\(^16,17\).
 - Detects FGFR2 fusions with a wide range of fusion partners\(^16,17\).
 - The molecular diversity of CCA supports the use of DNA- or RNA-based next-generation sequencing (NGS) assays as standard to detect both known and novel FGFR2 fusions or rearrangements\(^18\).

Figure adapted from Babina IS, Turner NC. 2017;\(^7\) Moeini A, et al. 2015;\(^16\) and Touat M, et al. 2015;\(^16\)

Figure based on Jain A, et al. 2018;\(^5\) Lowery MA, et al. 2018;\(^9\) and Shibata T, et al. 2018\(^10\)
Testing methodologies for the detection of FGFR2 fusions

- A number of methods with varying specificity can be used to detect FGFR2 fusions.

<table>
<thead>
<tr>
<th>Methodology</th>
<th>Advantages</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immunohistochemistry (IHC)</td>
<td>+ Inexpensive process</td>
<td>- Very low sensitivity for identifying rare fusions</td>
</tr>
<tr>
<td></td>
<td>+ Can detect fusions when rearrangements lead to overexpression of the fused protein</td>
<td>- Many IHC approaches use antibodies that cannot distinguish wild-type FGFR2 from fusion proteins</td>
</tr>
<tr>
<td></td>
<td>+ Can provide information about specific fusions depending on protein localisation</td>
<td>- No IHC method has been proven to have sufficient sensitivity and specificity to detect FGFR fusions</td>
</tr>
<tr>
<td>Reverse transcriptase polymerase chain reaction (RT-PCR)</td>
<td>+ Highly sensitive</td>
<td>- Methodology is limited to FGFR2 gene fusions with known fusion partners</td>
</tr>
<tr>
<td></td>
<td>+ Assay can be multiplexed to cover a range of mutations within a single reaction</td>
<td>- Requires prior knowledge of both fusion partners; novel fusion partners cannot be detected</td>
</tr>
<tr>
<td></td>
<td>+ Can easily be performed using clinical formalin-fixed paraffin-embedded samples</td>
<td>- Assay probes have to be designed for each specific fusion combination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Sensitive to cross-contamination linked to the carry-over of PCR products</td>
</tr>
<tr>
<td>Fluorescence in situ hybridisation (FISH)</td>
<td>+ Inexpensive process</td>
<td>- Low-resolution method</td>
</tr>
<tr>
<td></td>
<td>+ Well-established methodology and widely available within clinical laboratories</td>
<td>- Mainly restricted to the detection of DNA</td>
</tr>
<tr>
<td></td>
<td>+ Does not require living cells</td>
<td>- Complex rearrangements are usually not easily detectable</td>
</tr>
<tr>
<td></td>
<td>+ Can be easily performed on clinical formalin-fixed paraffin-embedded samples</td>
<td>- Intrachromosomal rearrangements, which account for about 50% of FGFR2 fusions in intrahepatic cholangiocarcinoma, can lead to false-negative results</td>
</tr>
<tr>
<td></td>
<td>+ Break-apart FISH probes can detect unknown fusion partners</td>
<td>- Break-apart FISH probes cannot identify the fusion partner</td>
</tr>
<tr>
<td></td>
<td>+ Relatively fast turnaround time</td>
<td>- Labour intensive and requires experienced pathologists</td>
</tr>
<tr>
<td>Next-generation sequencing (NGS)</td>
<td>+ Multiple targets simultaneously analysed in a single sample</td>
<td>- Slow turnaround time</td>
</tr>
<tr>
<td></td>
<td>+ High sensitivity and specificity</td>
<td>- Not cost effective for small sample numbers</td>
</tr>
<tr>
<td></td>
<td>+ Detects both known and novel fusions, regardless of breakpoints or fusion partners (depending on library prep method)</td>
<td>- Requires bioinformatics and trained personnel</td>
</tr>
<tr>
<td></td>
<td>+ Commercial kits covering gene fusions are available</td>
<td>- DNA-based: detection of novel fusions might be limited, especially when large intronic regions are involved</td>
</tr>
<tr>
<td></td>
<td>+ RNA-based: can distinguish in-frame, transcribed gene fusions versus out-of-frame fusions and avoid difficulties of sequencing large intronic regions</td>
<td>- RNA-based: sensitivity depends on the expression levels of the novel fusion gene; RNA is less stable than DNA</td>
</tr>
</tbody>
</table>

Least appropriate: RT-PCR, FISH

Most appropriate: IHC, NGS
The European Society for Medical Oncology (ESMO) recommends routine use of NGS to detect *FGFR2* fusions in advanced CCA.

Proposed algorithm of how *FGFR2* fusion testing can be incorporated into a diagnostic work-up:

1. Patient diagnosed with CCA
2. Acquire patient tumour sample
3. Oncologist to request *FGFR2* fusion test
4. Is in-house *FGFR2* fusion testing available?
 - No: Pathologist to send sample to laboratory with *FGFR2* fusion testing capabilities
 - Yes: Pathologist to perform *FGFR2* fusion testing with an appropriate diagnostic test
5. Pathologist to communicate *FGFR2* fusion status to oncologist
6. Oncologist to consider relevant treatment options for the patient

CCA, cholangiocarcinoma; FGFR2, fibroblast growth factor receptor 2

Visit www.incyte.com/what-we-do/clinical-trials to learn more about Incyte-sponsored clinical trials for patients with *FGFR2* fusion- or rearrangement-positive CCA.
A multidisciplinary team (MDT) approach is crucial to optimise patient care in iCCA29

- As part of this MDT approach, a tumour molecular profiling plan should be considered early in your patient’s treatment journey
- Key considerations for molecular profiling:30
 - Determining which clinically relevant genes to test for
 - Understanding test sample requirements (quantity and quality)
 - Understanding strengths and limitations of different testing methodologies
 - Understanding turnaround times
 - Understanding clinical implications of test results

External quality assurance programmes are essential to ensure accurate and reliable clinical biomarker testing31

Visit www.iqnpath.org to learn more about external quality assurance schemes for molecular testing in Europe

REFERENCES: